CtIP is required for DNA damage-dependent induction of P21

نویسندگان

  • Bo Liu
  • Rixin Cong
  • Bin Peng
  • Bingtao Zhu
  • Gelin Dou
  • Haiyan Ai
  • Xiaodong Zhang
  • Zhenghe Wang
  • Xingzhi Xu
چکیده

DNA endonuclease CtIP is involved in both DNA double-strand break (DSB) repair and transcriptional repression/activation. The cyclin-dependent kinase inhibitor P21, which is induced at transcription level in response to a variety of stresses, controls G₁/S transition. In this report, we found that CtIP bound to the P21 promoter, and this binding was enhanced in response to DNA damage. Concomitantly, ectopic expression of CtIP increased P21 promoter activity, and this increment was enhanced upon camptothecin treatment. Conversely, DNA damage failed to induce P21 gene expression in CtIP-deficient cells. Taken together, our data demonstrate that CtIP is required for DNA damage-induced P21 induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

And-1 coordinates with CtIP for efficient homologous recombination and DNA damage checkpoint maintenance

To prevent genomic instability, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homologous recombination repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of CHK1 kinase to induce the cell cycle checkpoint. But the mechanism is still not fully understood. Here, we establish that An...

متن کامل

CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation

To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia mutated and Rad3 related) and CHK1 kinases to induce the cell cycle checkpoint. In this paper, we ...

متن کامل

CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks.

CtIP (CtBP-interacting protein) associates with BRCA1 and the Mre11-Rad50-Nbs1 (MRN) complex and plays an essential role in homologous recombination (HR)-mediated DNA double-stranded break (DSB) repair. It has been described that CtIP forms dimers in mammalian cells, but the biological significance is not clear. In this study, we identified a conserved motif in the N terminus of CtIP, which is ...

متن کامل

And-1 is required for homologous recombination repair by regulating DNA end resection

Homologous recombination (HR) is a major mechanism to repair DNA double-strand breaks (DSBs). Although tumor suppressor CtIP is critical for DSB end resection, a key initial event of HR repair, the mechanism regulating the recruitment of CtIP to DSB sites remains largely unknown. Here, we show that acidic nucleoplasmic DNA-binding protein 1 (And-1) forms complexes with CtIP as well as other rep...

متن کامل

Activation of DSB processing requires phosphorylation of CtIP by ATR.

DNA double-strand breaks (DSBs) activate a DNA damage response (DDR) that coordinates checkpoint pathways with DNA repair. ATM and ATR kinases are activated sequentially. Homology-directed repair (HDR) is initiated by resection of DSBs to generate 3' single-stranded DNA overhangs. How resection and HDR are activated during DDR is not known, nor are the roles of ATM and ATR in HDR. Here, we show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014